Shearing Hyperbolic Surfaces, Bending Pleated Surfaces and Thurston's Symplectic Form
نویسنده
چکیده
The article develops a system of local holomorphic coordinates for the space of hyperbolic 3–manifolds with the fundamental group of a surface. These coordinates depend on the choice of a geodesic lamination on the surface, and are a complexified version of Thurston's shear coordinates for Teichmüller space. The imaginary part of these coordinates measures the bending of a pleated surface realizing the geodesic lamination. We also show how these coordinates are related, via Thurston symplectic form on the space of measured geodesic laminations, to the complex length function and to its differential. Résumé. L'article présente un système de coordonnées locales holomorphes pour l'espace des variétés hyperboliques de dimension 3 qui ont le groupe fondamental d'une surface. Ces coordonnées dépendent du choix d'une lamination géodésique sur la surface, et forment une complexification des coordonnées de décalage introduites par Thurston pour l'espace de Te-ichmüller. La partie imaginaire de ces coordonnées mesure la courbure d'une surface plissée réalisant la lamination géodésique. De plus, nous montrons comment ces coordonnées sont reliées, par l'intermédiaire de la forme symplectique de Thurston sur l'espace des laminations géodésiques mesurées, ` a la fonction longueur complexe età sa différentielle.
منابع مشابه
The Weil-petersson Kähler Form and Affine Foliations on Surfaces
The space of broken hyperbolic structures generalizes the usual Teichmüller space of a punctured surface, and the space of projectivized broken measured foliations–or equivalently, the space of projectivized affine foliations of a punctured surface–likewise admits a generalization to projectivized broken measured foliations. Just as projectivized measured foliations provide Thurston's boundary ...
متن کاملThe Geometry of the Moduli Space of Riemann Surfaces
We wish to describe how the hyperbolic geometry of a Riemann surface of genus g y g > 2, leads to a symplectic geometry on Tg, the genus g Teichmüller space, and ~Mg, the moduli space of genus g stable curves. The symplectic structure has three elements: the Weil-Petersson Kahler form, the FenchelNielsen vector fields t+, and the geodesic length functions I*. Weil introduced a Kahler metric for...
متن کاملOn Static Bending, Elastic Buckling and Free Vibration Analysis of Symmetric Functionally Graded Sandwich Beams
This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material properties of FG skins are varied through the thickness according to the power law distribution. The present theory accounts fo...
متن کاملModuli spaces of hyperbolic surfaces and their Weil–Petersson volumes
Moduli spaces of hyperbolic surfaces may be endowed with a symplectic structure via the Weil–Petersson form. Mirzakhani proved that Weil–Petersson volumes exhibit polynomial behaviour and that their coefficients store intersection numbers on moduli spaces of curves. In this survey article, we discuss these results as well as some consequences and applications.
متن کاملBending, buckling and free vibration responses of hyperbolic shear deformable FGM beams
This study investigated bending, buckling, and free vibration responses of hyperbolic shear deformable functionally graded (FG) higher order beams. The material properties of FG beams are varied through thickness according to power law distribution; here, the FG beam was made of aluminium/alumina, and the hyperbolic shear deformation theory was used to evaluate the effect of shear deformation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996